
1Supplement

Distance Metric Proof

A function d(x,y) is a distance metric if it observes the following conditions for all words x and y:

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) = 0

• d(x, y) = d(y, x)

• d(x, y) = d(x, z) + d(y, z)

Proof for dSL(x, y) = 0 ⇐⇒ x = y:

Three cases need to be considered:

1. Words x and y are the same sequences, i.e. they are of the same length and bases at the same
position are equal. Thus, no operations are necessary to transform x into y and their distance is 0

2. Word x is a prefix of y: x is elongated to match y exactly and no other operations are necessary, in
this case we consider x to be equal to y by definition

3. Word y is a prefix of x, x is truncated to match the length of y and no further operations are
necessary, in this case we consider x to be equal to y by definition

�

Proof for dSL(x, y) = 0

There are either no operations necessary to transform x into y (dSL(x, y) = 0) or one needs to apply
substitutions, insertions, and deletions to x to transform it into y in which case dSL(x, y) > 0.�

Proof for dSL(x, y) = dSL(y, x)

All operations in this distance measure are symmetrical: An insertion of base B at position p (abbrv.
ins(B,p)) is the reversal of deletion of base B at position p (abbrv. del(p)) and vice versa. A substitution
of base B1 with base B2 at position p (sub(B2,p)) is the reversal of a substitution of base B2 with base
B1 at position p (sub(B1,p)). Truncation (trunc()) is the reversal of the elongation (elong()) and vice
versa.

The distance dSL(x, y) can be expressed as a sequence of operations ins(), del(), sub() followed by
either trunc() or elong() to match x with y, e.g.: x → sub → ins → del → trunc → y. The reversal
operations sequence to transform y to x is obtained by reversing the individual substitution, deletion
and insertion operations in reverse order and finalize with the reverse of the elongation or truncation
operation: y → ins → del → sub → elong → x. The number of these operations is equal to the number
of operations to transform x into y and therefore dSL(y, x) = dSL(x, y).�



2Proof for dSL(x, y) ≤ dSL(x, z) + dSL(z, y)

Suppose the transformation of x to z is the result of a sequence of operations Oxz =< oxz1 , oxy2
, · · · , elong/trunc >.

The transformation of z to y is the sequence of operations Ozy =< ozy1
, ozy2

, · · · , elong/trunc >.
By the very nature of these operations, x can be transformed to y by the concatenation of both op-
eration sequences without the elongation or truncation followed by its own truncation or elongation:
Oxy =< oxz1 , oxz2 , · · · , ozy1 , ozy1 , · · · , elong/trunc >. The number of substitutions,deletions and inser-
tions in Oxy is the sum of substitutions, deletions and insertions in Oxz and Ozy and therefore dSL(x, y)
is at most equal to dSL(x, z) + dSL(z, y).�

Distance Calculation

Algorithm of distance calculation (pseudocode) using dynamical programming:

int function distance(Sequence sequence1, Sequence sequence2)

set length_1 to length of sequence1

set length_2 to length of sequence2

declare distances[length_1+1][length_2+1]

for i from 0 to length_1

set distances[i][0] to i

for j from 0 to length_2

set distances[0][j] to j

// Classical Levenshtein part

for i = 1 to length_1

for j = 1 to length_2

set cost to 0

if (sequence1[i-1] not equal to sequence[j-1])

set cost to 1

set distances[i][j] to minimum of

distances[i-1][j-1] + cost,// Substitution

distances[i][j-1] + 1, // Insertion

distances[i-1][j] + 1 // Deletion

set min_distance to distances[length_1][length_2]

// New Sequence-Levenshtein part

// Truncating

for i from 0 to length_1

set min_distance to minimum of min_distance and distances[i][length_2]

// Elongating

for j from 0 to length_2

set min_distance to minimum of min_distance and distances[length_1][j]



3

return min_distance

Code Rates

● ●

●

●

●
●

●
●

●

0.3

0.4

0.5

0.6

4 6 8 10 12

Barcode length

C
od

e 
ra

te Error−Correction Code

● Levenshtein
Sequence−Levenshtein

Figure S1. Code rates of Levenshtein and Sequence-Levenshtein codes depending on the lenght of
codewords.

Sizes of Sequence-Levenshtein Codes

n\d 3 5

4 5 1
5 13 2
6 27 3
7 77 5
8 188 8
9 612 17

10 2123 40
11 5714 90
12 20887 232
13 - (554)
14 - (1583)

Table S1. Sizes of Sequence-Levenshtein Codes Code sets were filtered for biological/chemical
eligibilty (c.f. Methods). We did not formally analyse or simulate barcodes of length n=13nt or n=14nt.

Codes used in Simulation 3

Of every code, a random subset of 48 barcodes was used. The details of these codes are clarified in Table
S2.



4Code Type Length Distance Code Size

Levenshtein 6 3 66
Levenshtein 9 5 67

Sequence-Levenshtein 7 3 77
Sequence-Levenshtein 11 5 90

Linear 5 3 48
No Correction 3 NA 60

Table S2. Codes of Simulation 3


